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SUMMARY 

The influence of the coupling factor between the adsorption isotherms of the 
two components of a binary mixture on the elution profiles of their bands in liquid 
chromatography, on their retention times and on the resolution between these bands 
is discussed using a perturbation approach. 

INTRODUCTION 

The elution of the components of a complex mixture through a chromatographic 
column is easily described in linear chromatography. The migration of each band and 
its progressive broadening are independent af the migration and broadening of the 
other component bands. The chromatogram of the mixture is the superimposition of 
the chromatograms obtained with each of the individual components injected pure, 
successively, in the same amount as is in the sample mixture. A series of Gaussian 
bands is obtained, provided that there is a single retention mechanism involved and the 
kinetics of mass transfer between and across phases are fast enough. Obviously, some 
of these bands may interfere, but these interferences result merely in the addition of the 
detector signals corresponding to each band profile. The local concentrations of the 
two or more component whose bands interfere remain independent. 

A different situation arises when the sample size is not negligible. Then, the 
chromatogram of the mixture is not the sum of the chromatograms of all the 
components of the mixture, and the chromatographic phenomenon becomes non- 
linear. This happens because the equilibrium isotherms of at least some of the 
components (the main ones) are not linear and because the equilibrium isotherms of 
most of these components depend on the concentrations of all or almost all the other 
components. 

Several recent studies have been published on the behavior of the bands of 
a binary mixture at high concentrations involving the use of numerical solutions 
calculated with a computeriP’. When samples of large or very large sizes are injected, 
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the non-linear behavior of the equilibrium isotherm is the main source of band 
broadening and is, in fact, the factor which controls the band profile. The shock and 
shock layer theories7 and the semi-ideal model8 account very well for the band profiles 
obtained in elution and displacement chromatography, for the progressive separation 
of these bands and for their interference when separation is incomplete. 

More fundamental approaches have been tried. The characteristic method has 
been extremely useful in providing an accurate description of the phenomena involved 
in the migration of the high-concentration bands and in explaining their profiles7,g~10. 
The shock theory is based on the results of this method1 ‘. The hodograph transform 
has been applied to the study of the elution band of a binary mixture and the results 
have been explained by the characteristic theory”. 

A complementary approach, focusing on the phenomena that take place at the 
onset of non-linear behavior, would be interesting. Of special importance is an 
understanding of the various effects arising in analytical applications of chromato- 
graphy when columns are overloaded, such as in trace analysis. The approach of 
Houghton1 3, who assumed a parabolic equilibrium isotherm and integrated a sim- 
plified mass balance equation, permits the investigation of the band profile at the 
beginning of column overload. Lin et al. I4 have successfully applied the perturbation 
theory to the same mass balance equation and predicted the progressive transition of 
the band profile from a symmetrical Gaussian curve to a tailing profile. 

The aim of this work was to extend this type of investigation to the case of 
a binary mixture and to study how the bands of two closely eluted compounds begin to 
interfere when the sample size is increased. The work was carried out within the 
framework of the ideal modeIi0-12. 

MATHEMATICAL MODEL 

We used the ideal model of chromatography, which assumes constant equilib- 
rium between the two phases of the chromatographic system during the migration of 
a concentration signal. More specifically, we assume that the kinetics of mass transfers 
between phases are infinitely fast and that the axial dispersion proceeds at a negligible 
rate. Under these conditions the mass balances of the two components of a binary 
mixture can be written as 

ac1 841 ,t+Far+U$=O 

(2) 

We assume that the injection profile is a rectangular pulse of maximum concentrations 
Cy and Cp and width t,, and consequently that the initial condition is described by 

ClW) = C2W) = 41(x,0) = q2tM-Y = 0 XI=-0 (3) 

and that the boundary condition is given by 

clw) = 6: C,(O,t) = cq O-Ct<t, 
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and 

C,(O,t) = C,(O,t) = 0 t>t, (4) 

Cl, C2, q1 and q2 are the concentrations of components 1 and 2 in the mobile and the 
stationary phases at time t and abscissa X, respectively; u is the mobile phase velocity 
and F the phase ratio, i.e., V,/V,. 

We have also assumed that the equilibrium isotherms of the two compounds 
studied are given by the classical binary Langmuir isotherm equations: 

q1 = 1 + blCl + b&* 

a2C2 

q2 = 1 + blCl + b2C2 

(5) 

In eqns. 5 and 6, al, a2, b1 and b2 are constants. They are the parameters of the 
Langmuir isotherm. The considerable advantage of this equation is that the coupling 
terms which are b2C2 for the first component and bl Cl for the second component, can 
be determined directly from experimental results regarding the single compound 
equilibrium isotherms of the pure components 1 and 2. No experiment involving 
mixtures of the two compounds is required, which is a great simplification. 

PERTURBATION ANALYSIS 

Since q1 and q2 are both functions of the two concentrations, C1 and C2, we have 
the following relationships between their partial differentials: 

a41 a41 ac1 &?l JC2 
-_-.-.-+__----‘_ 

at acl at ac2 at 

and 

aqz aq, ac2 aq, ac, 
-_-v---+_‘_ 

at ac2 at ac, at 

(7) 

The partial differentials of the concentrations in the stationary phase, q1 and q2 can be 
derived from eqns. 5 and 6: 

a41 al(l +bS) -= 
acl (1 +blCl +bzQ2 

aq2 ad1 +&Cl) -= 
x2 (1 +b,C, +b&)’ 
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a41 -al&Cl -= 
ac2 (1 +b,C, +bzC# 

aq2 -a2hG -= 
dC1 (l+blC1+bzC,)’ 

(11) 

(12) 

As we are studying the changes in band profiles, retention times and resolution which 
take place at the onset of column overloading with a binary mixture, we may assume 
that the concentrations C1 and C2 are small and that the terms blCl and b2C2 are 
much smaller than unity. Then we may simplify eqns. 9-12 using the classical 
approximation l/(1 +x) w 1 -x: 

aql -= 
acl al - 2albIC1 - aib2C2 

aq2 -= 
ac2 a2 - 2a2b2C2 - a2blCl 

aql -= 
ac2 

-Alma 

aq2 -= 
acl 

-e&G 

(13) 

(16) 

Combination of eqns. 7,8 and 13-I 6 with eqns. 1 and 2 gives the following equations, 
which are first-order approximations of the mass balance equations: 

(1 + Fal - 2Fa1b1C1 - Falb2C2) 2 - FalbzCI z + u 2 = 0 (17) 

and: 

(1 + Fa2 - 2Fa2b2C2 - Fu2blC1) $$ - FazbIC2 z + u $$ = 0 (18) 

The principle of the perturbation method consists in assuming that the solutions of the 
system of non-linear partial differential eqns. 1 and 2 are close to the solutions of the 
corresponding system of linear equations, i.e., of the system of eqns. 1 and 2 in which 
the isotherms q1 and q2 are merely proportional to C1 and C2, respectively. Then we 
can write 

Cl = ci’ + c; (19) 

cz = cl + C; (20) 
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where Cf and Ci are the solutions of the system of eqns. 1 and 2, where the two 
isotherms are q1 = alCl and q2 = a2C2 instead and where CI and C2, which are both 
functions of C1 and C2, are small. 

Cf and Ci are given by the following equations: 

(1 +Fal)%+u$J=O 

i i 
(1 + Fa2) % + 2.4 $$ = 0 

(21) 

(22) 

Replacing C1 and C2 in the left-hand side of eqns. 17 and 18 by their new expressions 
(eqns. 19 and 20), subtracting eqns. 21 and 22 from eqns. 17 and 18, respectively, and 
considering only the first-order terms, we obtain 

4 
(1 + Fal) z + us = (2FalblCf + Falb2C,d) $$ + FalbtC$$ (23) 

P 
(1 + Fa2) z + u 2 = (2Fa2b& + FazblCf) % + FazblC$$ (24) 

Eqns. 23 and 24 are linear partial differential equations for the perturbation terms 
C; and C2. They are still coupled, however, through the terms in their right-hand sides. 

LAPLACE TRANSFORMS AND MOMENT ANALYSIS 

In spite of the simplification made, it is still impossible to solve eqns. 23 and 24. 
As they are linear, it is possible, however, to take their Laplace transform and to derive 
the first moment of the band of each compound of the binary mixture. This permits the 
calculation of the variation of the retention time with increasing sample size. 

The Laplace transforms are 

- 
- 

(1 + Fal)PC; + u $$ = Fu,p(b,Cf* + b2C$$) 

- 
- 

(1 + Fa,)PC> + u z = Fa2p(b2C’f + b,C$Z$) 

(25) 

(26) 

where 

m 

WC s e-Ptw(x,t)dt 
0 

(27) 
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Eqns. 25 and 26 are first-order non-homogeneous differential equations. Their 
solutions are 

- 
Cl = exp 

-p(l + Far)x Ful ; - dx, 
u 

- (blpG + bzpC?Ci) exp 1 j (28) 
and 

- 
cl2 = exp 

-p(l + Fuz)x IV 5 (b2pC$* + b,pCfC$ exp ‘(1 
U 0 u - [ 

+UFa’)x’ 1 I dx’ (29) 

The two integration constants are 0, because C; (x = 0) = C;(x = 0) = 0. The first-order 
moments, pl,{, of the two compounds, i= 1, 2 , are related to the Laplace transform, 

G, by the following equation: 

- 

pl,i = - lim L E! 
P+o Ci dP 

(i = 1, 2) (30) 

Let 

Pi,i = P?,i + Pi,i (31) 

where py,i is the first moment, i.e., the retention time, of compound i under linear 
conditions: 

- 

py,i = _ lim L . !!.G 
p+o q dp 

(32) 

In the ideal model, we have no band broadening. Thus the retention time under linear 
conditions is 

PY,i = t, + L 

%i 

= tp + to (1 + kf’) = tp + tg,i (33) 

since the limiting velocity associated with an infinitely small concentration is u/(1 
+ Fai) = u/( 1 + k:‘). The second term of the right-hand side of eqn. 31, cl;,i, is the 
first-order perturbation term, which we shall now calculate. 

The two perturbation terms corresponding to the first-order moments at the end 
of the column (x = L) are given by 

- 

p;,r = _ lim A. dC; 
p-+0 cl dp 

=- a0 

s 

+ b 2 1 ~C%Zdtdxf) (34) 

0 
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and 
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p;,2 = - lim 1. dC; 
p+o c2 dp 

1 Fa2 =- .- 
m 

s 

Cj’dtdx’ + bl 

C2dt ’ 
1 lC’iddtdxf) (35) 

0 

As we assume the column to have an infinite efficiency (ideal model), the elution profile 
in linear chromatography is identical with the injection profile and we have 

m 

s 
Cidt = ctp (36) 

0 

and: 

ss * c’ dtdx’ = C;“t,L 
0 0 

(37) 

The elution profiles of both components are rectangles (see Fig. 1). The difference 
between the elution times of the rear of the first component profile and the front of the 
second component profile (Le., tB - tc, see Fig. 1) is 

dt=r,+$&=t,-;(k;O - k;‘) 

Complete separation is achieved when d t becomes zero and the migration distance in 
the column is 

L t, x’ = xs = (k;O _ k;op, (39) 

A c B D 
time 

Fig. 1. Partially resolved band profiles in the case of a rectangular injection in ideal chromatography. Elution 
profiles at the position x’ in the column. Retention times: A, CA = x’/uz,; B, ta = TV + t,; C, tc = x’/uz2; D, 
tD = rc + I,. At = ts - tc. 
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The overlap integral gives 

whenAt>O and x<x,and 

s m cC’$dt = 0 
0 

(40) 

(411 

when At < 0. Therefore, when the separation is incomplete, i.e., for 

L < x, or t, > (k;O - k\O)to 

we have 

ss 
m cPCl,dx’dt = CC; 

S[ 
t, - x’ (k;O - k’:) 1 dx’ = C’$l$L t, 

0 0 0 u 

Inserting eqns. 3642 into eqns. 34 and 35 gives 

- tow - &O) 
2 1 (42) 

(43) 

On the other hand, when the column length exceeds the critical value xs, we have 

t, - x’ (k’$ - k;O) 1 dx’ = ant; 
2t,(k’,0 - k;O) 

(441 
u 

Inserting eqns. 36, 37 and 44 in eqns. 34 and 35 gives 

P’I,~ = - (tR0.i - to) biCi + 
bjCjt, 

2t,(k;0 - k;O) 1 (451 

RESOLUTION 

If the sample size is very small, we have pl,i = tRi, where tRi is the retention time 
observed for the band of a finite amount of component i, and we can write, as a first 
approximation, 

t,2 - tR1 = Pl.2 - Pl,l = b8.2 - &I> + wl,2 - di,l> (461 

If, as a first approximation, we assume that the band width does not increase with 
increasing sample size at very low valuesl’, the resolution between the two bands 
becomes 
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R=2 - &I> -I- (P'I,Z - $i,dl = R" + AR (47) 

where R” is the resolution between these two bands under linear conditions. When the 
column length is smaller than xs, the decrease in resolution, AR is given by 

AR = 2 
(a - 1) (tRO,l - tO) 

Ul f 02 
][blC@’ - 1) - b2C+$ + l)] (48) 

When the column length is larger than xs, the two band profiles are resolved in linear 
ideal chromatography. This is not necessarily so in non-linear, ideal chromatography. 
The change in the resolution is now given by 

From eqns. 48 and 49, it is clear that AR is related to the parameters bl and b2 which are 
at the origin of the non-linear behavior of the equilibrium isotherms and of the 
coupling between these isotherms. Obviously, if bl = b2 = 0, then the chroma- 
tographic behavior is linear and AR = 0. 

RESULTS AND DISCUSSION 

The essential results derived above are eqns. 43, 45, 48 and 49. They illustrate 
qualitatively the phenomena that take place when the sample size increases and 
non-linear behavior begins to affect the band profiles and their retention times. The 
most important effects are the following. 

From eqns. 43 and 45, the variation of the first-order moment, i.e., of the 
retention time of the band of each component of a binary mixture with increasing 
sample size, depends on the value of both coefftcients b1 and b2 of the equilibrium 
isotherms of these two compounds. If bl and b2 are both positive (such as with 
competitive Langmuir isotherms, as in eqns. 5 and 6), pi,1 and ~11,~ are both negative. 
Both retention times decrease with increasing sample size. The sign and the magnitude 
of the variation of the resolution between the bands depend on the relative value of the 
coefftcients bi of the isotherms and on the relative concentration of the feed. 

If the isotherms are accurately approximated by equation similar to eqns. 5 and 
6, with negative values for both coeffients b1 and b2 (anti-Langmuir isotherms), the 
retention times of both components increase with increasing retention times and the 
resolution may increase or decrease, depending mainly on the relative composition of 
the feed. 

When eqns. 5 and 6 are still valid, but with values of the two coefficients b1 and b2 
which have opposite signs, the retention times of the components of a binary mixture 
can initially vary in either the same or the opposite direction, depending on the relative 
magnitude of the terms in eqns. 43 and 45. Situations where the retention time of one 
compound could remain constant are conceivable. Then the two terms in the 
right-hand side of either eqn. 43 or 45 are equal and opposite in sign. 
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The variation of the resolution between the two bands, AR, is given by eqns. 48 
and 49. The magnitude of the effect is determined by the importance of the two terms. 
If these two terms are close, the change in the resolution can be small. It would be better 
if the resolution could increase with increasing sample size. This takes place if b1 is 
positive and b2 is negative, as seen in eqns. 48 and 49. This can be only an exceptional 
case. 
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